
Frequently Asked Questions

1. I want to upload a package

2. I want to create JSON file for my package

3. I want to get MD5 checksum for the files in my package

4. I want to publish/un-publish a package

5. I want to add members/admins to discovery group

I want to upload a package

1. Select a Product Line from the drop down menu and then click the Upload Package link.

2. Package creation dialog shall pop up

3. Drag or Browse metadata JSON to Package metadata area

a. Data can be edited on UI or JSON file can be edited and dragged again

4. Click ‘Create package’ button to create the package

a. On successful package creation, a confirmation message shall be displayed.

5. Drag or Browse package files to Package files area

a. Can be done only after creating the package.

b. Once the package is created, Files tab will be visible through which files can be

dragged or browsed.

6. Click ‘Upload files’ button to upload the files

7. Once package is created

a. Editing and saving the metadata changes the created package

b. In order to create another package dialog must be closed and ‘Create package’ in the

main UI must be clicked again.

I want to create json file of my package

1. Json file refers to the file containing metadata of the package..

2. The metadata file contains the details of the package and its associated files. Following are

the attributes in the metadata.

Attribute Type # Description

id String 1 Required. Unique system generated identifier for a software

package. Not defined in new package creation.

packageType String 1 Required. Defines type of software package allowing multiple

types available for same device.

packageTitle String 0…1 Recommended. Name of a software package.

packageSubtitle String 0…1 Optional. More detailed naming of a software package.

packageDescription String 0…1 Optional. Description of a software package or content of the

software package.

packageClass List of

strings

1…* Required. Purpose of software package.

packageRevision String 1 Required. Software version carried in software package. Syntax

is limited to unlimited number numerical parts separated by

dot (.) First part of revision is expected to be most significant

part followed by less significant parts in descending

significance and ending to least significant part. Comparing

parts from most significant to least significant until there is

difference in numerical value of a part will compare revisions to

identify higher-lower revision.

packageSubRevision String 0…1 Optional. Can be used to define revision order of multiple

software packages with same package revision. Will be used in

package revision comparison when value of packageRevision

of two or more packages equal to get comparison order for

packages.

packageState String 0…1 Optional. Can be used to carry state information of package

during its lifecycle.

manufacturerName String 1 Required. A string to identify OEM manufacturer of a software

package.

manufacturerProductLine String 1 Required. A string to identify a product line of OEM

manufacturer of a software package.

manufacturerModelName List of

strings

0…* Recommended [2]. Identifies a display name of OEM

manufacturer product model.

manufacturerVariantName List of

strings

0…* Recommended [2]. Identifies OEM manufacturer product

variant.

manufacturerPackageId String 0…1 Recommended [2]. An identifier for software package within

OEM manufacturer and product line scope. Value is intended

to be unique unless omitted or NULL value defined. OEM shall

take care of uniqueness of the attribute.

manufacturerPlatformId List of

strings

0…* Recommended [2]. Can be used to identify device platform for

which software package is targeted.

manufacturerHardwareModel List of

strings

0…* Recommended [2]. Identifies OEM Manufacturer hardware

model.

manufacturerHardwareVariant List of

strings

0…* Recommended [2]. Identifies OEM Manufacturer hardware

variant.

operatorName List of

strings

0…* Recommended [2]. Identifies operator or operators for which

product is targeted.

customerName List of

strings

0…* Recommended [2]. Identifies customer or customers for which

product is targeted.

extendedAttributes Map

with

flat list

of

strings

0…* Optional. Enables OEM specific attribute extensions as flat list

of string type attributes

retentionPolicy String 1 Required. Name of retention policy to be applied. Retention

policies are listed and described in Software Repository

Retention Policy Guide.

files List 0…* Metadata of files associated with the package

3. Example JSON file

{
 "manufacturerName": "Contoso",
 "manufacturerProductLine": "WindowsPhone",
 "packageType": "Firmware",
 "packageClass": ["Testing"],
 "packageTitle": "Phone firmware",
 "packageSubtitle": "",
 "packageDescription": "",
 "packageRevision": "1.0.20",
 "packageSubRevision": "",
 "packageState": "Completed",
 "manufacturerHardwareModel": ["C-2014"],
 "manufacturerHardwareVariant": ["313", "314"],
 "manufacturerPackageId": "Build_123.12",
 "manufacturerPlatformId": ["8.1"],
 "manufacturerModelName": ["The Headphone"],
 "manufacturerVariantName": ["Red"],
 "operatorName": [],
 "customerName": [],
 "extendedAttributes": {
 "myOwnAttribute1": "My Own Value1",
 "myOwnAttribute2": "My Own Value2"
 },
 "retentionPolicy": "90 days",
 "files": [
 {
 "fileName": "firmware.pkg",
 "fileSize": "10240543",
 "fileType": "image",
 "checksum": [
 {
 "value": "8zpOSCYd3Jmkx96DXGtKsw==",
 "type": "MD5"
 }
],

 "alternateUrl": ["http://primary.local/path/firmware.pkg"]
 },
 {
 "fileName": "firmware.signature.bin",
 "fileSize": 459,
 "fileType": "Signature",
 "checksum": [
 {
 "value": "lHo9FcAD5r5KOAxKnIkX2g==",
 "type": "MD5"
 }
],
 "alternateUrl": ["http://primary.local/path/firmware.signature.bin"
]
 }
]
}

I want to get MD5 checksum for the files in my package

1. For each file mentioned in the package metadata (JSON file), its MD5 hash value must be

calculated by the source system/user before uploading to Software Repository.

2. It is used to ensure the file integrity during transit.

a. Source systems/users could use this hash value to enforce file integrity upon upload

to Software Repository.

b. Clients could use this hash value for file integrity check after file download.

3. Software Repository requires MD5 hash value in Base64 encoded format.

Sample

a. File (click to download) : package_metadata.json

b. MD5 hash value : li8HTGrUEMlLL7P1G0rj1A==

4. Command prompt utility to get MD5 hash value of a file in Base64 string

File Checksum Integrity Verifier (FCIV) is a command-prompt utility that computes and

verifies cryptographic hash values of files.

To get the base64 encoded hash value, utility usage is

>fciv package_metadata.json -xml myMD5.xml

5. Code snippet to get MD5 hash value of a file in Base64 string

https://sore.blob.core.windows.net/help/package_metadata.json?sv=2014-02-14&sr=c&sig=hk0zYpZjhHgsAiEfT%2BezReqD1eodYzbw6Yjg%2FE9QW4o%3D&st=2015-10-04T21%3A00%3A00Z&se=2015-10-12T21%3A00%3A00Z&sp=r
https://support.microsoft.com/en-us/kb/841290

a. C#

using System;
using System.IO;
using System.Security.Cryptography;
…

 private string GetMD5HashFromFile(string fileName)
 {
 using (var md5 = MD5.Create())
 {
 using (var stream = File.OpenRead(fileName))
 {
 return Convert.ToBase64String(md5.ComputeHash(stream));
 }
 }

 }

b. Java

import org.apache.commons.codec.binary.Base64;

import org.apache.commons.codec.digest.DigestUtils;

…

private String GetMD5HashFromFile(String fileName)
 {

return Base64.encodeBase64String(

DigestUtils.md5(Files.readAllBytes(Paths.get(fileName))));

}

c. Python

import hashlib
import base64
import sys

def md5base64(filePath):
 with open(filePath, 'rb') as fh:
 m = hashlib.md5()
 while True:
 data = fh.read(8192)
 if not data:
 break
 m.update(data)
 return base64.b64encode(m.digest()).decode("utf-8")

#provide the fully qualified filename as command line argument
print(md5base64(sys.argv[1]))

I want to publish/un-publish a package

1. Search for the package.

2. Click the globe icon against the package to be published from the Search result.

3. Package edit dialog shall pop up.

4. “Available groups” section lists all the group that you have access to.

a. Click the globe icon against a group to publish the package to it.

5. “Published groups” section lists all the group to which the package is already published to.

a. Click the cross icon against a group to unpublish the package from it.

I want to add members/admins to discovery group

1. Select a Product Line from the drop down menu.

a. Click the Groups tab.

b. On right corner, you can search the discovery group to which members needs to be

added by using search box

c. Click Member icon at the left corner of the particular group.

2. Group details dialog shall pop up.

3. Choose Members tab if you need to add members.

a. Enter the user account details in the text box.

b. Click Add Member button.

4. Choose Admins tab if you need to add admins.

a. Enter the user account details in the text box.

b. Click Add Admin button.

